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Overall Point & Relavance

By following steps laid out in the paper, we can calculate the
recursion relations for renormalized parameters like J (interaction
energy), 𝜇 (chemical potential), h (uniform external field), and hR
(width of random field’s distribution, i.e., random field strength).
Such recursion relations allow us to study a system’s (e.g., 1D
Ising Model) behavior at different length scales and have a better
understanding of the critical behavior and phase transitions in the
presence of the random field for said system. Also, we are shown
that initial Gaussian distributions may not hold under a
renormalization-group procedure.



1D Ising Hamiltonian with Random Field
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Conditions for Satisfying Gaussian Distribution,
consequential Hamiltonian
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Defining Previous Terms

ΔE ≡ 2𝜇 + 2hni −
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Obtaining recursion relations for J , 𝜇, and h

(1)Average the effective Hamiltonian over the random field: By
averaging the effective Hamiltonian, we can take into account the
influence of the random field on the system’s behavior. This step
allows us to obtain an effective description of the system that
captures the essential features of the disordered system.
(2)Absorb the term proportional to d𝜏 = d𝜏/𝜏: This term is
incorporated into the first term of the effective Hamiltonian, which
is the average of the Hamiltonian of the pure model (i.e., the model
without the random field). By doing so, we can effectively account
for the renormalization of the system as length scale is changed.



Cont.

(3)Integrate over the position and length of the small domain: The
averaging process includes integration over the position and length
of the small domain, which accounts for the influence of the local
interactions and randomness on the system’s behavior at the larger
length scale.
(4) Obtain a Hamiltonian with renormalized parameters J, 𝜇, and
h: After performing the steps mentioned above, we can obtain a
Hamiltonian that has the same form as the original Hamiltonian
but with renormalized parameters. These renormalized parameters
describe the system’s behavior at the larger length scale.
(5) Drop the constant shift in the ground-state energy: Since the
focus is on the critical behavior and phase transitions, which are
not affected by a constant shift in the ground-state energy, this
term can be disregarded in the analysis.



RG Recursion Results (1/2)

I = ln L where L is the linear dimension of the 1D system.
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Obtaining recursion relation for hR

(1)Antisymmetrize the unaveraged expression (4) with respect to
the sign of the spins in the background domain containing the
proposed small block. This antisymmetrization process is crucial
for determining how the random field interacts with the spins in
the system, which can influence the system’s behavior at the larger
length scale.
(2)Subtract off the mean: By subtracting the mean of the
renormalized random field, we can isolate the fluctuations in the
random field at the new length scale. These fluctuations are the
key contributors to the randomness in the system at the larger
scale.
(3)Calculate the variance of the field: The variance of the random
field at the new length scale quantifies the strength of the
randomness in the system. By calculating the variance, we can
obtain the recursion relation for the renormalized random field.
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RG Recursion Results (2/2)
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Fixed Point for Non-Gaussian Distribution Demonstration

𝜔 ≡ hR/J and v ≡ hR/𝜇, then from previous RG recursion results
see that
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where there is a fixed point at 2y ∗2 = 𝜖 =
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Non-Gaussian Demonstration
The recursion relation for cumulants of this RG-generated system is
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The central limit theorem tells us that

𝜕Ĉ2n
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≈ Ĉ2n (1 − n) (10)

but plugging into (8) a large x and n greater than 2 with a fixed 𝜖 ,
the higher-order cumulants are no longer ignorable as they’re very
large, thus a non-Gaussian distribution. Why n has to be greater
than 2 is evident with (9) rewritten as a matrix equation
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