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Introduction

● Roots of RG theory are in critical phenomena
● Some people may ask how much is this instrumental, as opposed to how 

much far it is crucial? (i.e., how much of it is physically real, vs a neat 
mathematical tool)

● Statistical Mechanics is not a theory that is reduced, and is not directly 
reducible to lower levels without new postulates -> most theorems have been 
proved in full figure

● Will view RG as a tool or computational device… and how it fits into QFT and 
other areas of physics



Whence came renormalization group theory?

● Paint RG theory in the context of critical exponents and scaling factors
○ Cyril Domb and his group at UCL, Pokrovski and Patashinskii used field-theoretic 

perspectives
● Full RG concept brought about by Kenneth G. Wilson, also added to be Kadanoff and 

Wegner through their use of marginal operators
● However it’s Landau’s use of effective order parameters in field theories that is crucial

○ Use knowledge of microscopic behaviors/symmetries to see how larger aspects of the 
system behave

● Order parameter allows us to gain knowledge into the intermediate range (10-6.5-10-3.5cm) 
between atomic/nuclei scales (10-13-10-8cm) and macroscopic objects

● Wilson’s work gave new meaning to coarse-grained hamiltonians
○ LGW-Hamiltonians are true but renormalized and have microscopic degrees of freedom 

integrated out



Whence came renormalization group theory? (cont.)
 

● Start of with LGW-Hamiltonian, then bring in statistical mechanics to understand macroscopic 
behavior

● 1944, Onsanger computed the partition function and thermodynamic properties of a 
fluid/simplest ferromagnet (i.e., the ising model)

○ Critical singularities disagreed with those expected in Landau Theory)
● This challenge, coupled with experimental evidence backing these predictions, gave rise to 

the idea of critical exponents… and ultimately influenced Ken Wilson to apply these ideas to 
quantum field theories

○ Mathematical analog with LGW-Hamiltonians in statistical mechanics and Feynman 
Path integrals in QFT

○ 1971: Wilson (and Wegner) revealed the beauty and effectiveness of RNGT
● Our understanding of anamlous (non-Landau) type transitions were greatly enhanced
● Some paradoxes have emerged, Arthur Wigmann: “Maybe we should go back and think more 

carefully about what we are actually doing in implementing theoretical ideas?”



Where stands the Renormalization Group?
● Mischaracterizations of RG by Itzykson, Drouffee and Benfatto, Gallavoti published 

misleading works, namely Statistical Field theory and Renormalization Group by 
claiming RGT is essentially a second order (lowest-order theory)
○ Implied also that QFT is necessary for RG, but disregarded monte carlo results 

and other uses of RG in real space (functional RG)
● Examples of problems treated by RG theory include: Kolmogorov-Arnold-Moser theory 

of hamiltonian stability, universality of critical points in statistical mechanics, Kondo 
problem for magnetic impurities in nonmagnetic materials, and many more
○ When Wilson solved the Kondo problem with RG and numerical techniques he 

wasn’t given much praise, even though it was a HUGE deal



Where stands the Renormalization Group? (cont.)

● Wilson explains that Feynman diagrams “completely hide the physics of many scales”
● Field theoretic techniques only work when the underlying physics is well understood, but RG 

can give insight into problems that are not well understood
● Wilson divides RG theory into 4 parts:

○ Theory of fixed points and linear/non-linear behavior near them
○ Field theoretic approach of RG for critical phenomena with small ε expansion
○ QFT methods -> Callan-Symanzik equations, Gell-Man-Low RG theory
○ Non-field theory RG transformations that are solved numerically



Exponents, anomalous dimensions, scale invariance and 
scale dependence

● Epitome of the success of RG theory is “It has to be stressed that the possibility 
of nonzero criticality is its most important achievement”

● Consider a microscopic variable Ѱ(r) 
○ In a magnet, this would be local magnetization M(r), or spin vector S(r)
○ in QFT these local variables are basic quantum fields, M(r), S(r) would become operators

● Observing the two point correlation function G(r) = <Ѱ(0)|Ѱ(r)>
○ Provides measure of how much microscopic fluctuations at origin affect those at distance r=|r| 

away
○ Near critical point a strong “ordering” influence or correlation spreads out -> at critical point we find 

power-law decay correlation function. I.e. Gc(r) ~ D/rd-2+η (d-2+η is critical exponent) (r>>a)



Exponents, anomalous dimensions, scale invariance and 
scale dependence (cont.)
● A η vanishes in Landau-Ginzberg or van der Waal’s (QFT -> massless particle)

○ In these theories basic functions are assumed to be analytic, non-singular and smooth to 
expand in positive powers in taylore series near critical point

● A η implies that the fluctuations are either 0 or play a role only at much smaller scales -> incorporate 
into effective /renormalized parameters (masses, coupling constants, etc.)

● Power law dependence -> no length scale -> scale invariance: r’=br, order parameter by bw

● G’c(br) ~ D/rd-2+η -> bwD/(b*r)d-2+η, w = ½(d-2+η)-> same correlation function (i.e. invariance).
● Scale invariance means classical theories should be suspect near criticality (η isn’t zero)

○ RGT -> get anomalous values of η 
● η=0, w=½(d-2). For d=3, η is small and we can renormalize the amplitude D’(R) = D/Rη, G’c(r)=D’/rd-2

● Small η, D’ dies slowly on the scale of R. In QFT, logR dependence on normalization parameter, 
variation scale still weaker than when η isn’t zero



Challenges Posed by Critical Phenomena

● 1869 Andrews reported carbon dioxide 
coexisting between liquid and gas phases at a 
meniscus in a glass tube at room temperature. 
Raise the temp to Tc=31C,liquid becomes gas.

● Critical densities and concentrations 
“non-universal parameters” that reflect the 
microscopic physics of the system below size 
a

● No real physical symmetry between coexisting 
liquid and gas, just a dense and less dense 
state



Challenges Posed by Critical Phenomena

● Asymptotic symmetry: t = (T-Tc)/Tcas T->0-. The fluid builds itself a mirror symmetry on the 
opposite side of the meniscus as T approaches Tc. Δ⍴=B|t|β,Critical exponent β=0.325 vs ½ 
expected classically (⅛ for square ising model, confirmed experimentally in 1984)

● β=0.325 also applies for certain magnetic materials. In these materials, below Tc can have 
spontaneous magnetization. 

○ Global shape of spontaneous magnetization doesn’t resemble normal coexistence curve
○ M0(T)~B|t|β as t->0-

● C(T) = A+_/|t|
ɑ as t-> 0+/- and A+/A-=0.52 universally, in 2D it’s 1 and we have log|t| behavior

● Other central quantities: Divergent thermal compressibility κ and divergent correlation length ξ 
-range of influence or of correlation

○ Long range limits: χ(T) = C+_/|t|
Ɣ,  ξ=ξ0

+/-/|t|ν, t->0 in 3d, ɣ=1.24, ν=0.63
● Early success of RG theory helped to understand universality classes



Exponent Relations, Scaling and Irrelevance

● Existence of universally scaling critical exponents was accepted in the 1960s
○ Now we have exponent relations, algebraic relations that are satisfied independent of class
○ ɣ=(2-η)ν, ɑ+2β+ɣ=2. Hold for d=2, accurate to d=3 (classical d>4)

● Onsanger’s solution to ising model: Correlation function scales as correlation 
length in all critical regions for all lengths greater than lattice spacing

● Equation of State
○ Classically it can be found using taylor expansions in (T-Tc), etc. 
○ This enforces classical exponents

● Widom’s scaling hypothesis - minimize number of critical exponents
○ A ɑ isi from specific heat, Δ=β+ɣ (how h scales with T)
○ Wisdom: Classical obeys scattering: ɑ=0, Δ=1.5,φ=-0.5



Exponent Relations, Scaling and Irrelevance (cont.)

● Φ, z = g/|t|φ not present in classical model. In RG we have a spectrum of Φ values 
○ Spectrum is overlook as -Φ>0, or Φ<0, so the higher order coupling constants g are irrelevant 

and die off in RG treatment
○ Tc approached, same function F for all g -> universality
○ All of these systems will exhibit the same critical behavior determined by free energy 

function ℱ
● RGT implies scaling!

○ Implies exponents like ɑ,β,ɣ that are obtained through thermodynamic relations
○ Δ, ɑ determine all other leading exponents, so we can predict other exponents too
○ Fix Pressure (or g)-> obtain E.O.S./data with respect to two variables (say T,H)

■ Display as isotherms near Tc and plot scaled f or M vs scaled field h, data 
collapses to single curve ℱ

● Collapse is universal since the free energy density is as well
○ Vortex glass transition in high temp YBCO



Relevance, Crossover, Marginality

● Scaling behavior is valid when (T-Tc) is small, external field is small, and microscopic cutoff 
distance is less than what we’re interested in

● If P∝g, z=g/|t|φ and becomes small as t->0 -> expand around scaling Function F(y,z) in 
powers of z

○ Spontaneous magnetization should then become 
○ Above θ=-φ, so φ>0 yields a less interesting F(y,z) behavior
○ P is a relative perturbation, causing 1) critical point destruction or 2) new universality class and scaling function 

can be revealed with new critical exponents
● Ferromagnetic short range and long range dipole-dipole interactions solved with RG theory

○ New exponents obtained numerically for iron, nickel, are so close to short-range exponents that it almost 
doesn’t matter

● d=3 Ising-type ferromagnets have dipolar couplings as marginal variables -> log|T-Tc| 
behavior. 

○ d=2, marginal behavior in critical exponents…mention of more diverse applications in CM physics than QFT



The Task for Renormalization Group Theory

● RG theory wishes to:
○ i) should explain ubiquity of power law at and near critical point

■ Flow in some space of Hamiltonians H (or coupling constants)
■ The critical point is a fixed point of that flow
■ Flow operator (RG transformation R) is linearized about fixed point
■ Find R such that you can break the operator into eigenvalues and use that to find flow 

parameters and power laws☆☆☆

○ ii) obtain ɑ,ꞵ,ɣ,δ,ν and w; clarify why and how classical values are wrong
○ iv) correction-to-scaling exponent θ (1/φ) (and higher order)
○ v) crossover events, the universality of non-trivial exponents, and a derivation of scaling
○ vi)Handle breakdown of universality and exotic temperature dependencies



The Task for Renormalization Group Theory

● Consider spins sx (spins, tensors, operators) at uniformly located space 
point x. With lattice spacing a, V=Nad. The local magnetization and energy 
densities are

○ Have reduced hamiltonian 
○ {sx} is the set of all spins, t, h, hj are the thermodynamic fields, we use t and h here
○ Wilson: a physical hamiltonian spanned by t&h is a subspace of the total hamiltonian 

space H
○  
○ Perform trace, take thermodynamic limit, get exact results (Onsanger in 1944)
○ While these results are known analytically, there’s no real insight gained into why these 

are the results. RG can shed some light on the reasoning behind these exponents



Kadanoff’s Scaling Picture

● In 1966 Kadanoff derived scaling by mapping a critical or near-critical 
system onto itself by a reduction of the numbers of degrees of freedom

○ Initially looked down upon, but the basics of his ideas were quite similar to those of 
Wilson’s work

○ Consider ising model with spin values +/-1, and coupling constant J. Spontaneous 
magnetization can occur below a critical temperature Tc

○ Now divide block into L x L x … x L (L=b*a), bd spins.
■ Each block B’ has spin at center (sx’), scale as x’=x/b, sx’ looks like sx

○ Relating J’->J, h’->h, t’->t, we assume b<Ⲝ/a (Ⲝ is correlation length)



Kadanoff’s Scaling Picture (cont.)

●



Kadanoff’s Scaling Picture (cont.)

● Scaling has the following affect:
○  


